
Box Model,
Layout &

Positioning 1

Block Elements vs Inline Elements
Last session, we briefly touched on how CSS uses
“boxes” to define the layout of a web page.

Each HTML element rendered on the screen is a
box, and they come in two flavors: “block” boxes
and “inline“ boxes.

Let's see an example of this

Inline vs Block Boxes
1. Block boxes always appear below the previous block element. This is the

“natural” or “static” flow of an HTML document when it gets rendered by a web
browser.

2. The width of block boxes is set automatically based on the width of its parent
container. In this case, our blocks are always the width of the browser window.

3. The default height of block boxes is based on the content it contains. When you
narrow the browser window, the <h1> gets split over two lines, and its height
adjusts accordingly.

4. Inline boxes don’t affect vertical spacing. They’re not for determining
layout—they’re for styling stuff inside of a block.

5. The width of inline boxes is based on the content it contains, not the width of
the parent element.

Changing Box Behavior
We can override the default box type of HTML elements with the CSS display
property.

display property can have inline or block as its value.

em, strong {
 background-color: #B2D6FF;
 display: block;
}

Box Model
The “CSS box model” is a set of rules that determine the dimensions of every
element in a web page.

Box Model
CSS Box Model gives each box (both inline and block) four properties:

● Content – The text, image, or other media content in the element.
● Padding – The space between the box’s content and its border.
● Border – The line between the box’s padding and margin.
● Margin – The space between the box and surrounding boxes.

This is everything a browser needs to render an element’s box.

The content is what you author in an HTML document, the rest of them are purely
presentational, so they’re defined by CSS rules.

Padding
The padding property…you guessed it…defines the
padding for the selected element:

h1 {
 padding: 50px;
}

This adds 50 pixels to each side of the <h1>
heading.

Notice how the background color expands to fill
this space.

Padding
Sometimes you’ll only want to style one side of an element. For that, CSS provides
the following properties:

p {
 padding-top: 20px;
 padding-bottom: 20px;
 padding-left: 10px;
 padding-right: 10px;
}

You can use any unit for the padding of an element, not just pixels. Again, em units
are particularly useful for making your margins scale with the base font size.

Padding: Shorthand Format
Typing out all of these properties out can be
tiresome, so CSS provides an alternative
“shorthand” form of the padding property
that lets you set the top/bottom and
left/right padding with only one line of CSS.

p {
 padding: 20px 10px;
}

Vertical Horizontal

Padding: Shorthand Format
Alternatively, if you provide four values, you
can set the padding for each side of an
element individually. The values are
interpreted clockwise, starting at the top:

p {
 padding: 20px 10px 15px 5px;
} To

p

Right Left

Bottom

Borders
Border is a line drawn around the content and padding of an element.

Borders are specified as "thickness, style, color"

For example this CSS rule creates a solid, thin red border:

h1 {
 border: 1px solid red;
}

And this one creates a thick, dotted green border:

h1 {
 border: 4px dotted green;
}

Heading

Heading

Borders
Like padding, there are -top, -bottom, -left, and -right variants for the border
property:

h1 {
 border-top: 1px solid red;
 border-right: 2px dotted green;
 border-bottom: 3px dashed yellow;
 border-left: 4px double purple;
}

Heading

Borders
You can specify each property of a border separately, or all three together.

h1 {
 border: 4px dotted green;
}

h1 {
 border-top: 1px solid red;
 border-right: 2px dotted green;
 border-bottom: 3px dashed yellow;
 border-left: 4px double purple;
}

h1 {
 border-width: 4px;
 border-style: dotted;
 border-color: green;
}

h1 {
 border-top-width: 1px;
 border-top-style: solid;
 border-top-color: red;
 ...
}

Margins
Margins define the space outside of an element’s border. Or, rather, the space
between a box and its surrounding boxes.

To define margins, we use the same format for specifying CSS rules as we did for
padding:

h1 {
 margin: 50px;
}

p {
 margin-top: 20px;
 margin-bottom: 20px;
 margin-left: 10px;
 margin-right: 10px;
}

p {
 margin: 20px 10px;
}

p {
 margin: 20px 10px 20px 10px;
}

Margins vs Padding
Margins and padding can accomplish the same thing in a lot of situations, making it
difficult to determine which one is the “right” choice. The most common reasons why
you would pick one over the other are:

● The padding of a box has a background, while margins are always transparent.
● Padding is included in the click area of an element, while margins aren’t.
● Margins collapse vertically, while padding doesn’t (we’ll discuss this more in the

next section).

If none of these help you decide whether to use padding over margin, then don’t fret
about it—just pick one. In CSS, there’s often more than one way to solve your
problem.

Margins on Inline Elements
watch what happens when we add a
big margin to our element

Inline boxes completely ignore the
top and bottom margins of an
element.

The horizontal margins display just
like we’d expect

Padding on Inline Elements
If we change margin to padding, we’ll
discover that this isn’t exactly the
case for a box’s padding. It’ll display
the blue background; however, it
won’t affect the vertical layout of the
surrounding boxes.

Positioning

Static Positioning
HTML elements are positioned static by default.

Static elements are positioned in the normal flow of the page

In normal flow, inline boxes flow from left to right, wrapping to next line when
needed.

In normal flow, block boxes flow from top to bottom, making a new line after every
box.

Static Positioning for Inline Boxes

Static Positioning for Block Boxes

Relative Positioning
Takes the element out of the normal flow, allowing it to be moved to the top, left,
right or bottom.

Does not affect the elements surrounding it.

Makes an element a "positioning context" in which to position other elements
relative to it.

Relative positioning and absolute positioning are used together.

Relative Positioning
The "relative" value will still put the element in the normal flow, but then offset it
according to top/left/right/bottom properties.

Absolute Positioning
Positions element outside of the normal flow.

An absolutely positioned element is offset from its container block, positioned
relative.

Its container block is the first element that has a position other than static.

If no such element is found, the container block is <html>.

Other elements act as if it's not there.

Determined by its offset values in the properties top, bottom, right and left.

Absolute Positioning
The "absolute" value will take the element out of the normal flow and position it in
relation to the window (or the closest non-static element).

Bottom

Top

Example: Absolute Positioning
Here's an example of an image with a
caption absolutely positioned over top
of it.

The containing div has a position of
relative, and the caption has a position
of absolute.

Z-index
Sometimes elements overlap. You can change the order of overlapping with z-index.

The element with highest z-index goes on top.

BottomTop

Let's try this!
Let's create a div that contains an image and a caption, and position the caption
absolutely overtop the image.

